3.28.68 \(\int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx\) [2768]

3.28.68.1 Optimal result
3.28.68.2 Mathematica [C] (verified)
3.28.68.3 Rubi [A] (verified)
3.28.68.4 Maple [F]
3.28.68.5 Fricas [C] (verification not implemented)
3.28.68.6 Sympy [C] (verification not implemented)
3.28.68.7 Maxima [F]
3.28.68.8 Giac [F]
3.28.68.9 Mupad [F(-1)]

3.28.68.1 Optimal result

Integrand size = 21, antiderivative size = 315 \[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=-\frac {4 (c x)^{-n/4}}{a c n}-\frac {\sqrt {2} \sqrt [4]{b} x^{n/4} (c x)^{-n/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{a^{5/4} c n}+\frac {\sqrt {2} \sqrt [4]{b} x^{n/4} (c x)^{-n/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{a^{5/4} c n}-\frac {\sqrt [4]{b} x^{n/4} (c x)^{-n/4} \log \left (\sqrt {b}+\sqrt {a} x^{-n/2}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}\right )}{\sqrt {2} a^{5/4} c n}+\frac {\sqrt [4]{b} x^{n/4} (c x)^{-n/4} \log \left (\sqrt {b}+\sqrt {a} x^{-n/2}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}\right )}{\sqrt {2} a^{5/4} c n} \]

output
-4/a/c/n/((c*x)^(1/4*n))-1/2*b^(1/4)*x^(1/4*n)*ln(-a^(1/4)*b^(1/4)*2^(1/2) 
/(x^(1/4*n))+a^(1/2)/(x^(1/2*n))+b^(1/2))/a^(5/4)/c/n/((c*x)^(1/4*n))*2^(1 
/2)+1/2*b^(1/4)*x^(1/4*n)*ln(a^(1/4)*b^(1/4)*2^(1/2)/(x^(1/4*n))+a^(1/2)/( 
x^(1/2*n))+b^(1/2))/a^(5/4)/c/n/((c*x)^(1/4*n))*2^(1/2)-b^(1/4)*x^(1/4*n)* 
arctan(1-a^(1/4)*2^(1/2)/b^(1/4)/(x^(1/4*n)))*2^(1/2)/a^(5/4)/c/n/((c*x)^( 
1/4*n))+b^(1/4)*x^(1/4*n)*arctan(1+a^(1/4)*2^(1/2)/b^(1/4)/(x^(1/4*n)))*2^ 
(1/2)/a^(5/4)/c/n/((c*x)^(1/4*n))
 
3.28.68.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.01 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.12 \[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=-\frac {4 x (c x)^{-1-\frac {n}{4}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\frac {b x^n}{a}\right )}{a n} \]

input
Integrate[(c*x)^(-1 - n/4)/(a + b*x^n),x]
 
output
(-4*x*(c*x)^(-1 - n/4)*Hypergeometric2F1[-1/4, 1, 3/4, -((b*x^n)/a)])/(a*n 
)
 
3.28.68.3 Rubi [A] (verified)

Time = 0.46 (sec) , antiderivative size = 274, normalized size of antiderivative = 0.87, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {870, 868, 772, 843, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c x)^{-\frac {n}{4}-1}}{a+b x^n} \, dx\)

\(\Big \downarrow \) 870

\(\displaystyle \frac {x^{n/4} (c x)^{-n/4} \int \frac {x^{-\frac {n}{4}-1}}{b x^n+a}dx}{c}\)

\(\Big \downarrow \) 868

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \int \frac {1}{b x^n+a}dx^{-n/4}}{c n}\)

\(\Big \downarrow \) 772

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \int \frac {x^{-n}}{a x^{-n}+b}dx^{-n/4}}{c n}\)

\(\Big \downarrow \) 843

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \int \frac {1}{a x^{-n}+b}dx^{-n/4}}{a}\right )}{c n}\)

\(\Big \downarrow \) 755

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {a} x^{-n/2}+\sqrt {b}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\frac {\int \frac {1}{x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a}}+\frac {\int \frac {1}{x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {1}{-x^{-n/2}-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int \frac {1}{-x^{-n/2}-1}d\left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\int \frac {\sqrt {b}-\sqrt {a} x^{-n/2}}{a x^{-n}+b}dx^{-n/4}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{a} \left (x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}\right )}{\sqrt [4]{a} \left (x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{a} \left (x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}\right )}{\sqrt [4]{a} \left (x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}\right )}dx^{-n/4}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{b}-2 \sqrt [4]{a} x^{-n/4}}{x^{-n/2}-\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {2} \sqrt {a} \sqrt [4]{b}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}+\sqrt [4]{b}}{x^{-n/2}+\frac {\sqrt {2} \sqrt [4]{b} x^{-n/4}}{\sqrt [4]{a}}+\frac {\sqrt {b}}{\sqrt {a}}}dx^{-n/4}}{2 \sqrt {a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {4 x^{n/4} (c x)^{-n/4} \left (\frac {x^{-n/4}}{a}-\frac {b \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{a} x^{-n/4}}{\sqrt [4]{b}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}+\sqrt {a} x^{-n/2}+\sqrt {b}\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} x^{-n/4}+\sqrt {a} x^{-n/2}+\sqrt {b}\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b}}}{2 \sqrt {b}}\right )}{a}\right )}{c n}\)

input
Int[(c*x)^(-1 - n/4)/(a + b*x^n),x]
 
output
(-4*x^(n/4)*(1/(a*x^(n/4)) - (b*((-(ArcTan[1 - (Sqrt[2]*a^(1/4))/(b^(1/4)* 
x^(n/4))]/(Sqrt[2]*a^(1/4)*b^(1/4))) + ArcTan[1 + (Sqrt[2]*a^(1/4))/(b^(1/ 
4)*x^(n/4))]/(Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b]) + (-1/2*Log[Sqrt[b] + 
Sqrt[a]/x^(n/2) - (Sqrt[2]*a^(1/4)*b^(1/4))/x^(n/4)]/(Sqrt[2]*a^(1/4)*b^(1 
/4)) + Log[Sqrt[b] + Sqrt[a]/x^(n/2) + (Sqrt[2]*a^(1/4)*b^(1/4))/x^(n/4)]/ 
(2*Sqrt[2]*a^(1/4)*b^(1/4)))/(2*Sqrt[b])))/a))/(c*n*(c*x)^(n/4))
 

3.28.68.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 772
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p, 
x] /; FreeQ[{a, b}, x] && ILtQ[n, 0] && IntegerQ[p]
 

rule 843
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n 
 - 1)*(c*x)^(m - n + 1)*((a + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[ 
a*c^n*((m - n + 1)/(b*(m + n*p + 1)))   Int[(c*x)^(m - n)*(a + b*x^n)^p, x] 
, x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n* 
p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
 

rule 868
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) 
 Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[ 
{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !IntegerQ[n]
 

rule 870
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^Int 
Part[m]*((c*x)^FracPart[m]/x^FracPart[m])   Int[x^m*(a + b*x^n)^p, x], x] / 
; FreeQ[{a, b, c, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] &&  !Intege 
rQ[n]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.28.68.4 Maple [F]

\[\int \frac {\left (c x \right )^{-1-\frac {n}{4}}}{a +b \,x^{n}}d x\]

input
int((c*x)^(-1-1/4*n)/(a+b*x^n),x)
 
output
int((c*x)^(-1-1/4*n)/(a+b*x^n),x)
 
3.28.68.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 298, normalized size of antiderivative = 0.95 \[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\frac {a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x e^{\left (-\frac {1}{4} \, {\left (n + 4\right )} \log \left (c\right ) - \frac {1}{4} \, {\left (n + 4\right )} \log \left (x\right )\right )}}{x}\right ) - a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} - x e^{\left (-\frac {1}{4} \, {\left (n + 4\right )} \log \left (c\right ) - \frac {1}{4} \, {\left (n + 4\right )} \log \left (x\right )\right )}}{x}\right ) + i \, a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {i \, a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x e^{\left (-\frac {1}{4} \, {\left (n + 4\right )} \log \left (c\right ) - \frac {1}{4} \, {\left (n + 4\right )} \log \left (x\right )\right )}}{x}\right ) - i \, a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} \log \left (\frac {-i \, a n \left (-\frac {b c^{-n - 4}}{a^{5} n^{4}}\right )^{\frac {1}{4}} + x e^{\left (-\frac {1}{4} \, {\left (n + 4\right )} \log \left (c\right ) - \frac {1}{4} \, {\left (n + 4\right )} \log \left (x\right )\right )}}{x}\right ) - 4 \, x e^{\left (-\frac {1}{4} \, {\left (n + 4\right )} \log \left (c\right ) - \frac {1}{4} \, {\left (n + 4\right )} \log \left (x\right )\right )}}{a n} \]

input
integrate((c*x)^(-1-1/4*n)/(a+b*x^n),x, algorithm="fricas")
 
output
(a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1/4)*log((a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1 
/4) + x*e^(-1/4*(n + 4)*log(c) - 1/4*(n + 4)*log(x)))/x) - a*n*(-b*c^(-n - 
 4)/(a^5*n^4))^(1/4)*log(-(a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1/4) - x*e^(-1/4 
*(n + 4)*log(c) - 1/4*(n + 4)*log(x)))/x) + I*a*n*(-b*c^(-n - 4)/(a^5*n^4) 
)^(1/4)*log((I*a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1/4) + x*e^(-1/4*(n + 4)*log 
(c) - 1/4*(n + 4)*log(x)))/x) - I*a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1/4)*log( 
(-I*a*n*(-b*c^(-n - 4)/(a^5*n^4))^(1/4) + x*e^(-1/4*(n + 4)*log(c) - 1/4*( 
n + 4)*log(x)))/x) - 4*x*e^(-1/4*(n + 4)*log(c) - 1/4*(n + 4)*log(x)))/(a* 
n)
 
3.28.68.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.15 (sec) , antiderivative size = 308, normalized size of antiderivative = 0.98 \[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\frac {c^{- \frac {n}{4} - 1} x^{- \frac {n}{4}} \Gamma \left (- \frac {1}{4}\right )}{a n \Gamma \left (\frac {3}{4}\right )} - \frac {\sqrt [4]{b} c^{- \frac {n}{4} - 1} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} - \frac {i \sqrt [4]{b} c^{- \frac {n}{4} - 1} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {3 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} + \frac {\sqrt [4]{b} c^{- \frac {n}{4} - 1} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {5 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} + \frac {i \sqrt [4]{b} c^{- \frac {n}{4} - 1} e^{- \frac {3 i \pi }{4}} \log {\left (1 - \frac {\sqrt [4]{b} x^{\frac {n}{4}} e^{\frac {7 i \pi }{4}}}{\sqrt [4]{a}} \right )} \Gamma \left (- \frac {1}{4}\right )}{4 a^{\frac {5}{4}} n \Gamma \left (\frac {3}{4}\right )} \]

input
integrate((c*x)**(-1-1/4*n)/(a+b*x**n),x)
 
output
c**(-n/4 - 1)*gamma(-1/4)/(a*n*x**(n/4)*gamma(3/4)) - b**(1/4)*c**(-n/4 - 
1)*exp(-3*I*pi/4)*log(1 - b**(1/4)*x**(n/4)*exp_polar(I*pi/4)/a**(1/4))*ga 
mma(-1/4)/(4*a**(5/4)*n*gamma(3/4)) - I*b**(1/4)*c**(-n/4 - 1)*exp(-3*I*pi 
/4)*log(1 - b**(1/4)*x**(n/4)*exp_polar(3*I*pi/4)/a**(1/4))*gamma(-1/4)/(4 
*a**(5/4)*n*gamma(3/4)) + b**(1/4)*c**(-n/4 - 1)*exp(-3*I*pi/4)*log(1 - b* 
*(1/4)*x**(n/4)*exp_polar(5*I*pi/4)/a**(1/4))*gamma(-1/4)/(4*a**(5/4)*n*ga 
mma(3/4)) + I*b**(1/4)*c**(-n/4 - 1)*exp(-3*I*pi/4)*log(1 - b**(1/4)*x**(n 
/4)*exp_polar(7*I*pi/4)/a**(1/4))*gamma(-1/4)/(4*a**(5/4)*n*gamma(3/4))
 
3.28.68.7 Maxima [F]

\[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int { \frac {\left (c x\right )^{-\frac {1}{4} \, n - 1}}{b x^{n} + a} \,d x } \]

input
integrate((c*x)^(-1-1/4*n)/(a+b*x^n),x, algorithm="maxima")
 
output
-b*integrate(x^(3/4*n)/(a*b*c^(1/4*n + 1)*x*x^n + a^2*c^(1/4*n + 1)*x), x) 
 - 4*c^(-1/4*n - 1)/(a*n*x^(1/4*n))
 
3.28.68.8 Giac [F]

\[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int { \frac {\left (c x\right )^{-\frac {1}{4} \, n - 1}}{b x^{n} + a} \,d x } \]

input
integrate((c*x)^(-1-1/4*n)/(a+b*x^n),x, algorithm="giac")
 
output
integrate((c*x)^(-1/4*n - 1)/(b*x^n + a), x)
 
3.28.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c x)^{-1-\frac {n}{4}}}{a+b x^n} \, dx=\int \frac {1}{{\left (c\,x\right )}^{\frac {n}{4}+1}\,\left (a+b\,x^n\right )} \,d x \]

input
int(1/((c*x)^(n/4 + 1)*(a + b*x^n)),x)
 
output
int(1/((c*x)^(n/4 + 1)*(a + b*x^n)), x)